Logaritma
Grafik logaritma terhadap basis yang berbeda.
merah adalah terhadap basis e, hijau adalah terhadap basis 10, dan ungu adalah
terhadap basis 1.7. Perhatikan bahwa grafik logaritma terhadap basis yang
berbeda selalu melewati titik (1,0)
Logaritma adalah operasi matematika yang merupakan
kebalikan dari eksponen atau pemangkatan.
Rumus dasar logaritma:
bc= a ditulis sebagai blog
a = c (b disebut basis)
Beberapa orang menuliskan blog a =
c sebagai logba = c.
Basis
Basis yang sering dipakai atau paling banyak
dipakai adalah basis 10, e≈
2.71828... dan 2.
Notasi
- Di Indonesia, kebanyakan buku pelajaran Matematika menggunakan notasi blog a daripada logba. Buku-buku Matematika berbahasa Inggris menggunakan notasi logba
- Beberapa orang menulis ln a sebagai ganti elog a, log a sebagai ganti 10log a dan ld a sebagai ganti 2log a.
- Pada kebanyakan kalkulator, LOG menunjuk kepada logaritma berbasis 10 dan LN menunjuk kepada logaritma berbasis e.
- Pada beberapa bahasa pemrograman komputer seperti C,C++,Java dan BASIC, LOG menunjuk kepada logaritma berbasis e.
- Terkadang Log x (huruf besar L) menunjuk kepada 10log x dan log x (huruf kecil L) menunjuk kepada elog x.
Mencari nilai logaritma
Cara untuk mencari nilai logaritma antara
lain dengan menggunakan:
- Tabel
- Kalkulator (yang sudah dilengkapi fitur log)
Rumus
Logaritma
|
||
ac = b → ª log b = c
|
||
a = basis
|
||
b = bilangan yang dilogaritma
|
||
c = hasil logaritma
|
||
Sifat-sifat Logaritma
|
||
ª log a = 1
|
||
ª log 1 = 0
|
||
ª log aⁿ = n
|
||
ª log bⁿ = n • ª log b
|
||
ª log b • c = ª log b + ª log c
|
||
ª log b/c = ª log b – ª log c
|
||
ªˆⁿ log b m = m/n • ª
log b
|
||
ª log b = 1 ÷ b log a
|
||
ª log b • b log c • c
log d = ª log d
|
||
ª log b = c log b ÷ c
log a
|
Kegunaan logaritma
Logaritma sering digunakan untuk memecahkan
persamaan yang pangkatnya tidak diketahui. Turunannya mudah dicari dan karena
itu logaritma sering digunakan sebagai solusi dari integral. Dalam persamaan bn
= x, b dapat dicari dengan pengakaran, n dengan logaritma, dan x dengan fungsi
eksponensial.
Sains dan teknik
Dalam sains, terdapat banyak besaran yang
umumnya diekspresikan dengan logaritma. Sebabnya, dan contoh-contoh yang lebih
lengkap, dapat dilihat di skala logaritmik.
- Negatif dari logaritma berbasis 10 digunakan dalam kimia untuk mengekspresikan konsentrasi ion hidronium (pH). Contohnya, konsentrasi ion hidronium pada air adalah 10−7 pada suhu 25 °C, sehingga pH-nya 7.
- Satuan bel (dengan simbol B) adalah satuan pengukur perbandingan (rasio), seperti perbandingan nilai daya dan tegangan. Kebanyakan digunakan dalam bidang telekomunikasi, elektronik, dan akustik. Salah satu sebab digunakannya logaritma adalah karena telinga manusia mempersepsikan suara yang terdengar secara logaritmik. Satuan Bel dinamakan untuk mengenang jasa Alexander Graham Bell, seorang penemu di bidang telekomunikasi. Satuan desibel (dB), yang sama dengan 0.1 bel, lebih sering digunakan.
- Skala Richter mengukur intensitas gempa bumi dengan menggunakan skala logaritma berbasis 10.
- Dalam astronomi, magnitudo yang mengukur terangnya bintang menggunakan skala logaritmik, karena mata manusia mempersepsikan terang secara logaritmik.
Penghitungan yang lebih mudah
Logaritma memindahkan fokus penghitungan dari
bilangan normal ke pangkat-pangkat (eksponen). Bila basis logaritmanya sama,
maka beberapa jenis penghitungan menjadi lebih mudah menggunakan logaritma::
Sifat-sifat di atas membuat penghitungan
dengan eksponen menjadi lebih mudah, dan penggunaan logaritma sangat penting,
terutama sebelum tersedianya kalkulator
sebagai hasil perkembangan teknologi modern.
Untuk mengkali dua angka, yang diperlukan
adalah melihat logaritma masing-masing angka dalam tabel, menjumlahkannya, dan
melihat antilog jumlah tersebut dalam tabel. Untuk mengitung pangkat atau akar
dari sebuah bilangan, logaritma bilangan tersebut dapat dilihat di tabel, lalu
hanya mengkali atau membagi dengan radix pangkat atau akar tersebut.
Kalkulus
Turunan
fungsi logaritma adalah
dimana ln adalah logaritma natural, yaitu
logaritma yang berbasis e. Jika b = e, maka rumus di atas
dapat disederhanakan menjadi
Integral fungsi logaritma adalah
Integral logaritma berbasis e adalah
Sebagai contoh carilah turunan
Penghitungan nilai logaritma
Nilai logaritma dengan basis b dapat dihitung
dengan rumus dibawah ini.
Sedangkan untuk logaritma berbasis e dan
berbasis 2, terdapat prosedur-prosedur yang umum, yang hanya menggunakan
penjumlahan, pengurangan, pengkalian, dan pembagian.
Tidak ada komentar:
Posting Komentar